Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Кандрашина Елена Александровна

6. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

университет» Процедура: тестирование проводится с использованием «Системы управления обучением уникальный Сърдимый Слушателям предлагается для ответа 30 вопросов по разделам программы, b2fd765521 предлагается варианта ответа.

Ma	T					
№ п/п	Формулировка вопроса и варианты ответа	Ответ				
1	Если в некоторой окрестности точки x_0 функция $f(x)$ заключена между двумя					
	функциями $\varphi(x)$ и $\psi(x)$, имеющими одинаковый предел A при $x \to x_0$, то					
	функция $f(x)$:					
	а)Имеет значение $f(x_0) = A$					
	б)Не имеет предела при $x \to x_0$					
	в)Имеет предел при $x \to x_0$, равный А					
2	Пусть $\alpha(x)$, $\beta(x)$ - бесконечно малые при $x \to a$ и $\lim_{x \to a} \frac{\beta(x)}{\alpha(x)} = 1$. Тогда $\alpha(x)$:	б				
	а) P авна $\beta(x)$					
	б)Эквивалентна $\beta(x)$					
	в) Бесконечно малая более высокого порядка, чем $\beta(x)$					
3	Укажите неверное утверждение:	б				
	a) $\lim_{x \to 0} \frac{\sin x}{x} = 1$					
	$6) \lim_{x \to 0} \frac{\cos x}{x} = 1$					
	B) $\lim_{x \to 0} \frac{arctgx}{x} = 1$					
4	Значение предела $\lim_{\tau} tgx$ равно:	В				
	$x \rightarrow \frac{\pi}{2} + 0$					
	a) 0					
	δ) ∞ - ∞					
5	B) -∞	В				
	Значение предела $\lim_{x \to \infty} \frac{x^3 + 2x^2 + x + 3}{x^2 + 1}$ равно:	В				
	a) 1					
	6) 0					
6	в) $^{\infty}$ Производной функции y=f(x) называется:	a				
	Av	a				
	$\begin{array}{c} \Delta x \to 0 \ \Delta x \end{array}$					
	$6) \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta y}$					
	B) $\lim_{\Delta x \to 0} \frac{y}{x}$					
7	Если функция дифференцируема в некоторой точке, то она в этой точке:	б				
	а) Имеет разрыв первого рода					
	б) Непрерывна					

h	в) Принимает значение, равное 0	
	Если $y = f(u)$ и $u = \varphi(x)$ дифференцируемые функции от своих аргументов, то	В
	производная сложной функции $y = f(\varphi(x))$ равна:	
	a) $y' = f'(\varphi'(x))$	
	$5) y' = f'(\varphi(x))$	
	$y' = f'(\varphi(x))\varphi'(x)$	
	Между двумя нулями дифференцируемой функции всегда найдется: a) Точка разрыва	б
	б) Хотя бы один ноль производной	
	з) Хотя бы один ноль второй производной	
	Производная функции $f(x) = x^2 + \sqrt{x}$ равна:	б
	a) $f'(x) = 2x - \sqrt{x}$	
ľ	$f(x) = 2x - \sqrt{x}$	
	$5) \ f'(x) = 2x - \frac{1}{2\sqrt{x}}$	
	$3) \ f'(x) = 2x + \sqrt{x}$	
	Укажите верное равенство:	a
i	a) $\int (f(x) - \varphi(x)) \cdot dx = \int f(x) \cdot dx - \int \varphi(x) \cdot dx$	
	$f(x) = \int f(x) \cdot dx$	
	$\int \int \frac{f(x)}{\varphi(x)} dx = \frac{\int f(x) \cdot dx}{\int \varphi(x) \cdot dx}$	
	3) $\int (f(x) \cdot \varphi(x)) \cdot dx = \int f(x) \cdot dx + \int \varphi(x) \cdot dx$	
10	T T	~
	Нему равна производная от неопределенного интеграла:	б
	а) Производной от подинтегральной функции б) Подинтегральной функции	
	в) Подинтегральному выражению	
	Тусть функция $y = f(x)$ непрерывна на промежутке [a; ∞), тогда:	б
	∞ b	
į	$\int f(x)dx = \int f(x)dx$	
	a a	
4	$\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x)dx$	
ľ	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	∞	
	3) $\int f(x)dx = \lim_{x \to a} f(x) - f(a)$	
	$a x \rightarrow \infty$	
	Пинией уровня функции двух переменных z=f(x,y) является:	a
	а) Линия на плоскости Оху в каждой точке которой функция принимает	
	одинаковые значения	
	5) Линия на плоскости Оуz в каждой точке которой функция принимает одинаковые значения	
	одинаковые значения в) Геометрическое место точек пространства, задаваемых координатами:	
	(x; y; f(x, y))	
	Производная по направлению функции двух переменных z=f(x,y) вычисляется по	В
	формуле:	2
	± ± •	
į	a) $\frac{\partial z}{\partial l} = \frac{\partial z}{\partial x} \cos \alpha + \frac{\partial z}{\partial x} \cos \alpha$	
	$5) \frac{\partial z}{\partial l} = z_x' + z_y'$	
	3) $\frac{\partial z}{\partial l} = \frac{\partial z}{\partial x} \cos \alpha + \frac{\partial z}{\partial x} \cos \beta$	
	Oi Oi	

16	Укажите неверное утверждение для произвольных матриц А и В:	a
	a) $A \cdot B = B \cdot A$	
	$6) A \cdot E = E \cdot A$	
	$_{\rm B)} AB \neq BA$	
17	Обратная матрица существует и единственна тогда и только тогда, когда	б
	исходная матрица является:	
	а) вырожденной	
	б) невырожденной	
10	в) квадратной	
18	Система векторов называется линейно независимой, если:	a
	а) их линейная комбинация равна 0 только тогда, когда все коэффициенты равны 0	
	б) их линейная комбинация равна $\frac{0}{2}$, когда все коэффициенты равны 0	
	в) их линейная комбинация равна $\overset{\circ}{0}$, когда хотя бы один из коэффициентов равен 0	
19	Укажите неверную операцию над векторами $\bar{a} = (a_1, a_2, a_n)_{U}$	В
	$\overline{b} = (b_1, b_2, \dots b_n)$	
	a) $\overline{a} + \overline{b} = (a_1 + b_1, a_2 + b_2, \dots a_n + b_n)$	
	$\vec{a} = (a_1 - b_1, a_2 - b_2, \dots a_n - b_n)$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
20	$\overline{a} \cdot \overline{b} = (a_1 \cdot b_1, a_2 \cdot b_2, \dots a_n \cdot b_n)$	
20	Размерность линейного пространства это-	a
	а) максимальное число содержащихся в нем линейно независимых векторов	
	б) максимальное число содержащихся в нем линейно зависимых векторов	
21	в) минимальное число содержащихся в нем линейно зависимых векторов	
21	Ранг системы векторов это:	б
	а) максимальное число линейно зависимых векторов	
	б) максимальное число линейно – независимых векторов	
22	в) минимальное число линейно – независимых векторов	
22	Укажите неверный ответ: ранг системы векторов не изменится, если	a
	а) добавить или отбросить любой вектор	
	б) из двух равных векторов один отбросить	
- 22	в) отбросить вектор, являющийся линейной комбинацией остальных векторов	
23	С помощью формул Крамера можно решить такую систему линейных уравнений, у которой:	a
	а) число уравнений равно числу неизвестных и определитель системы не равен 0	
	б) число уравнений больше числа неизвестных и определитель системы не равен о	
	в) матрица коэффициентов при неизвестных является невырожденной матрицей	
24	Система линейных неоднородных уравнений совместна тогда и только тогда,	В
	когда:	ь
	а) ранг матрицы системы равен числу неизвестных	
	б) ранг матрицы системы меньше ранга расширенной матрицы этой системы	
	в) ранг матрицы системы равен рангу расширенной матрицы этой системы	
25	Опорное решение системы линейных уравнений это:	б
	а) неотрицательное решение	
	б) неотрицательное базисное решение	
	в) базисное решение	
26	Если при решении системы линейных уравнений методом Гаусса появится	б
	уравнение вида $0 \cdot x1 + 0 \cdot x2 + + 0 xn = 0$, то:	
	а) система несовместна	
	б) это уравнение можно отбросить и продолжить решение системы	
L		

	в) начать заново решение системы				
27	Если при решении системы линейных уравнений методом Гаусса появится	a			
	уравнение вида $0x1 + 0x2 + + 0xn = b$, где $b \neq 0$, то:				
	а) система несовместна				
	б) это уравнение можно отбросить и продолжить решение системы				
	в) начать заново решение системы				
	Если даны две точки A (x1 y1) и B (x2 y2), то расстояние d между ними равно:	б			
	a) $d = x_2 - x_1 + y_2 - y_1 $				
	6) $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$				
	B) $d = (x_2 - x_1)^2 + (y_2 - y_1)^2$				
29	Какое из этих уравнений не является уравнением прямой:	В			
	$\mathbf{a}) y = kx + b$				
	$6) \frac{x}{a} + \frac{y}{b} = 1$				
	$B) Ax^2 + By + C = 0$				
30	Если k1 и k2 угловые коэффициенты двух прямых 11 и 12, то укажите	б			
	неверное утверждение:				
	$a) l_1 \parallel l_2 \Leftrightarrow k_1 = k_2$				
	a) $l_1 \parallel l_2 \Leftrightarrow k_1 = k_2$ 6) $l_1 \perp l_2 \Leftrightarrow k_1 = \frac{1}{k_2}$ B) $l_1 \perp l_2 \Leftrightarrow k_1 = -\frac{1}{k_2}$				
	$\mathbf{B}) \ l_1 \perp l_2 \Longleftrightarrow k_1 = -\frac{1}{k_2}$				

6.1 Шкала и критерии тестирования

Минимальный (% правиль ответов и оценка	ных рас) пра	Изложенный, екрытый ответ (% вильных ответов) и оценка 3	Законченный, полный ответ (% правильных ответов) и оценка 4	Образцовый; достойный подражания ответ (% правильных ответов) и оценка 5
50% и мен	iee	51-71%	72-92%	93-100%